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Abstract

An accurate and efficient solution procedure based on the two-dimensional elasticity theory for free vibration of

arbitrary laminated thick circular deep arches with some combinations of classical boundary conditions is introduced. In

order to accurately represent the variation of strain across the thickness, the layerwise theory is used to approximate the

displacement components in the radial direction. Employing Hamilton’s principle, the discretized form of the equations of

motion and the related boundary conditions in the radial direction are obtained. The resulting governing equations are

then discretized using the differential quadrature method (DQM). After performing the convergence studies, new results

for laminated arches with different set of boundary conditions are developed. Additionally, different values of the arch

parameters such as opening angle, thickness-to-length and orthotropy ratios are considered. In all cases, comparisons with

the results obtained using the finite element software ‘ABAQUS’ and also with those of the first- and higher-order shear

deformation theories available in the literature are performed. Close agreements, especially with those of ABAQUS, are

achieved.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Laminated composite circular arches have found wide applications as structural members in aerospace,
marine and other industries. In comparison with research works on the free vibration analyses of isotropic
arches, some of which can be found in Refs. [1–3], only limited references can be found on laminated
composite arches [4–11].

Transverse shear deformation and rotary inertia have significant effects on the natural frequencies of the
thick composite arches, especially on the higher-order modes. Most of the previous works are based on the
ee front matter r 2008 Elsevier Ltd. All rights reserved.
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Nomenclature

Aij
mn stiffness coefficient

Ay
ij first-order DQ weighting coefficients

b width of the arch
Bij

mn stiffness coefficient
By

ij second-order DQ weighting coefficients
C two-dimensional material stiffness matrix
Cij two-dimensional material stiffness
C0 three-dimensional material stiffness ma-

trix
C three-dimensional material stiffness ma-

trix in principal material coordinates
D amplitude of domain degrees of freedom
Dij

mn stiffness coefficient
h total thickness of the arch
Iij inertia coefficients
Fi

ry generalized transverse shear forces
Kbb boundary stiffness matrices
Kbd boundary stiffness matrices
Kdb domain stiffness matrices
Kdd domain stiffness matrices
M mass matrix
ne number of elements in ABAQUS model-

ing
nL number of orthotropic layers
nm number of mathematical layers through

the thickness of the arch
nr total number of nodes through the

thickness of the arch
ny number of DQ grid points
Ni

yy generalized axial forces
r radial coordinate variable
ri radial position of node i

R mean radius of the arch
Ri inner radius of the arch
Ro outer radius of the arch
t time
T transformation matrix
Ui nodal values of the displacement compo-

nents u

Vi nodal values of the displacement compo-
nents v

W m
ij mth-order DQ weighting coefficients

y tangential coordinate variable
y0 opening angle of the arch
ji global Lagrange interpolation functions

in the r-direction
oi ith natural frequencies
$i ith non-dimensional natural frequencies

½¼ oiðL
2=hÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12r=E1

p
�

gry transverse shear strain component
e vector of strain components
ei vector of in-plane strain components
eo vector of out-of-plane strain components
err normal strain component in the r-direc-

tion
eyy normal strain component in the y-direc-

tion
ri vector of in-plane stress components
ro vector of out-of-plane stress components
srr normal stress component in the r-direc-

tion
sry transverse shear stress component
syy normal stress component in the y-direc-

tion
( )�1 inverse of matrix ( )
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one-dimensional single-layer theories such as the classical theory [5,6], the first and higher-order shear
deformation theories [4,7–11]. The classical laminate theory neglects the shear deformation and rotary inertia
effects.

Exact solutions can be obtained straightforwardly for thin and thick arches with simply supported
boundary conditions. To study the free vibration of laminated composite arches with general boundary
conditions, usually numerical approximate methods such as the finite element and Ritz methods [4–6,9] are
used.

The layerwise theory is a refined theory that can take into account the thickness effects with minimum
computational cost [12–15]. Unlike the equivalent single-layer theories [4–11], the layerwise theories assume
separate displacement field expansions within each subdivision. Hence, the layerwise theory provides a
kinematically correct representation of the strain field in discrete layers [12–16]. This is an advantage of the
layerwise theories in comparison with higher-order shear deformation theories. Since the shear strains are
discontinuous, this leaves the possibility of the continuous transverse stresses between adjacent layers in
the layerwise theory.
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Differential quadrature method (DQM) as an alternative numerical technique was used for the solution of
structural problems. The development and its recent applications can be found in a review paper by Bert and
Malik [16] and also in the research works of Malekzadeh and his co-workers [17–21]. To the authors’ best
knowledge, a mixed application of DQ and layerwise theory for composite structures has not yet been
reported.

Due to the through-the-thickness material discontinuity, the conventional DQM cannot be used for
the two-dimensional elasticity analysis of laminated composite arches problems. Hence, in this paper,
using the two-dimensional layerwise theory in conjunction with the DQ method, a hybrid numerical method is
introduced for the in-plane free vibration analysis of thick laminated deep arches with some combinations of
classical boundary conditions (simply supported, clamped and free) and general boundary conditions.
The convergence behaviors of the method against the number of mathematical layers and DQ grid points are
investigated. Comparisons with the results of the first-order shear deformation theory (FSDT), the
higher-order shear deformation theory (HSDT) and in all cases with finite element based software
ABAQUS [22] are made. Considering the effects of different parameters such as opening angle, thickness-to-
length and orthotropy ratios, some new results for the natural frequencies of the laminated arches are
developed.
2. Basic relations

Consider a laminated thick circular deep arch composed of nL perfectly bonded orthotropic layers of width
b, total thickness h, opening angle y0 and mean radius R (Fig. 1). Based on the two-dimensional theory of
elasticity, the linearized in-plane strain–displacement relations are as follows:

eTi ¼ ½�yy; �rr; gry� ¼
1

r
uþ

qv

qy

� �
;

qu

qr
;

1

r

qu

qy
� v

� �
þ

qv

qr

� �
. (1)

In the equivalent single-layer theories of beams, in addition to the assumptions of plane stress or strain
in the width direction, the normal stress in the thickness direction (srr) was neglected to express the
stress–strain relations for each layer. But, here, this assumption is removed. However, since the width of
the arch is supposed to be small in comparison with the thickness, the plane stress assumption is employed,
i.e. szr ¼ szy ¼ szz ¼ 0. To derive the stress–strain relations at an arbitrary point of a laminae, the
L

hk

h
Rir

�0

�

Fig. 1. An arbitrary laminated circular deep arch.
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three-dimensional constitutive relations is used, which is

syy
srr

szz

sry

srz

szy
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�yy
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�zz
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8>>>>>>>>><
>>>>>>>>>:

9>>>>>>>>>=
>>>>>>>>>;
¼ C0e, (2)

where C0 ¼ TCTT; C is the material stiffness matrix in the material principal coordinates of the laminae and T

represents the transformation matrix [13].
In order to implement the plane stress conditions, Eq. (2) can be rearranged as

ri

ro

( )
¼

Cii Cio

Coi Coo

" #
ei

eo

( )
, (3)

where

ri ¼

syy
srr

sry

8><
>:

9>=
>;; ro ¼

szz
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>:

9>=
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Using the conditions of zero stress vector on the z-plane, i.e. ro ¼ 0, one obtains

ri ¼ C ei, (4)

where C ¼ Cii
� Cio

ðCoo
Þ
�1Coi.

3. Equations of motion and boundary conditions

To develop a layerwise model for the arches that posses full two-dimensional modeling capability, either for
state of plane stress or strain, a displacement field that accounts for all the three strain components in a
kinematically correct manner must be assumed. Specifically, the in-plane strain eyy should be continuous while
the transverse strain gry should be piecewise continuous through the laminate thickness.

In order to build a high degree of transverse discretization generality into the model, the layerwise laminate
theory of Reddy [13] is used to introduce the following expansions for the displacement components:

ur ¼ uðr; y; tÞ ¼
Xnr

i¼1

Uiðy; tÞjiðrÞ ¼ Uiðy; tÞjiðrÞ; uy ¼ vðr; y; tÞ ¼ V iðy; tÞjiðrÞ, (5)

where as obvious from Eq. (5), for brevity purpose, the indicial summation rule is used henceforth. ji denotes
the global interpolation function in the r-direction. Also Ui and Vi represent the displacement components of
all points located on the ith plane (defined by r ¼ ri) in the r- and y-directions, respectively. Additionally, nr

stands for the total number of nodes through the thickness of the arch, which depends on the number of
mathematical layers (nm) and nodes per layer in the thickness direction.

In the present study, one-dimensional Lagrange interpolation functions are used in each mathematical layer
and hence the global interpolation function ji(r) can easily be obtained. The layerwise concept is general such
that the number of subdivisions can be greater than, equal to, or less than the number of material layers
through the thickness. Any desired degree of displacement variation through the thickness are easily obtained
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by either adding more subdivisions (mathematical layers) or using higher-order Lagrangian interpolation
polynomials through the thickness.

Substituting the displacement components from Eq. (5) into Eq. (1), the results read

�rr ¼ Uiðy; tÞ
djiðrÞ

dr
; �yy ¼

jiðrÞ

r
Uiðy; tÞ þ

qV iðy; tÞ
qy

� �
; gry ¼

jiðrÞ

r

qUiðy; tÞ
qy

� Viðy; tÞ
� �

þ Viðy; tÞ
djiðrÞ

dr
.

(6)

The equations of motion at each node can be obtained by using Hamilton’s principle, which, in this case
turns intoZ t2

t1

ðdU � dTÞdt ¼

Z t2

t1

Z y0

0

Z Ro

Ri

½srrd�rr þ syyd�yy þ srydgry � rð _ud _uþ _vd_vÞ�br dr dy
� �

dt ¼ 0. (7)

Insertion of Eqs. (4) and (6) into Eq. (7), followed by integration with respect to the thickness coordinate r

and also integration by parts with respect to coordinate y and time t, yields the equations of motion and the
related boundary conditions at each node i with i ¼ 1,2,y,nr as follows:Equations of motion:

dUi:

� A
ij
33

q2Uj

qy2
þ ðB

ij
23 � B

ji
23Þ

qUj

qy
þ ðA

ij
11 þ B

ji
12 þ B

ij
12 þD

ij
22ÞUj � A

ij
13

q2Vj

qy2

þ ðA
ij
11 þ A

ij
33 � B

ji
33 þ B

ij
12Þ

qVj

qy
� ðA

ij
13 � B

ji
13 þ B

ij
23 �D

ij
23ÞVj þ I ij €Uj ¼ 0, (8)

dV i:

� A
ij
13

q2Uj

qy2
� ðA

ij
11 þ A

ij
33 þ B

ji
12 � B

ij
33Þ

qUj

qy
� ðA

ij
13 � B

ij
13 þ B

ji
23 �D

ij
23ÞUj

� A
ij
11

q2Vj

qy2
þ ðB

ij
13 � B

ji
13Þ

qVj

qy
þ ðA

ij
33 � B

ji
33 � B

ij
33 þD

ij
33ÞV j þ I ij €Vj ¼ 0. (9)

Boundary conditions:

Either Ui ¼ 0 or Fi
ry ¼ A

ij
33

qUj

qy
þ ðA

ij
13 þ B

ji
23ÞUj þ A

ij
13

qVj

qy
� ðA

ij
33 þ B

ji
33ÞV j ¼ 0, (10)

Either Vi ¼ 0 or Ni
yy ¼ A

ij
13

qUj

qy
þ ðA

ij
11 þ B

ji
12ÞUj þ A

ij
11

qVj

qy
� ðA

ij
13 � B

ji
13ÞV j ¼ 0, (11)

where F i
ry and Ni

yy are the generalized shear and axial forces, respectively. In the above equations, unlike the
first approximation type, the stiffness and inertia coefficients are obtained by exact integrations from the
following expressions:

Aij
mn ¼

Z Ro

Ri

bCmn

jijj

r

	 

dr; Bij

mn ¼

Z Ro

Ri

bCmnjj

dji

dr
dr,

Dij
mn ¼

Z Ro

Ri

bCmn

dji

dr

djj

dr
r dr; I ij ¼

Z Ro

Ri

brjijjr dr. (12)

It is obvious that the approximate numerical methods such as finite element method (FEM), finite difference
or differential quadrature method [3,16–21] can easily be used to solve the resulting layerwise equations of
motion subjected to the related boundary conditions. Due to high accuracy of the DQM and its low
computational efforts, this method is employed in this study.

4. DQ discretization

In order to use the DQ method to discretize the governing equations in the axial direction y, each
mathematical layer is discretized into a set of ny grid points in this direction. Then, at each boundary or
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domain grid points, the spatial derivatives are discretized according to the DQ-rules for derivatives. A brief
review of the DQM is presented in Appendix A. Using the DQ discretization rules, for an arbitrary layer i and
at each domain grid point k with k ¼ 2,3,y,ny�1, the equations of motion (1–3) become

Eq. (8):

� A
ij
33

Xny
m¼1

W 2
kmUmj þ ðB

ij
23 � B

ji
23Þ
Xny
m¼1

W 1
kmUmj þ ðA

ij
11 þ B

ji
12 þ B

ij
12 þD

ij
22ÞUkj � A

ij
13

Xny
m¼1

W 2
kmVmj

þ ðA
ij
11 þ A

ij
33 � B

ji
33 þ B

ij
12Þ
Xny
m¼1

W 1
kmV mj � ðA

ij
13 � B

ji
13 þ B

ij
23 �D

ij
23ÞV kj þ I ij €Ukj ¼ 0. (13)

Eq. (9):

� A
ij
13

Xny
m¼1

W 2
kmUmj � ðA

ij
11 þ A

ij
33 þ B

ji
12 � B

ij
33Þ
Xny
m¼1

W 1
kmUmj � ðA

ij
13 � B

ij
13 þ B

ji
23 �D

ij
23ÞUj

� A
ij
11

Xny
m¼1

W 2
kmV mj þ ðB

ij
13 � B

ji
13Þ
Xny
m¼1

W 1
kmV mj þ ðA

ij
33 � B

ji
33 � B

ij
33 þD

ij
33ÞV kj þ I ij €Vkj ¼ 0. (14)

Hereafter fij stands for f(ri,yj,t). In a similar manner the DQ analogs of the boundary conditions for the ith
layer can be obtained:

Eq. (10):

Either Uki
¼ 0 or F ki

ry ¼ A
ij
33

Xny
m¼1

W 1
kmUmj þ ðA

ij
13 þ B

ji
23ÞUkj

þ A
ij
13

Xny
m¼1

W 1
kmV mj � ðA

ij
33 þ B

ji
33ÞV kj ¼ 0. (15)

Eq. (11):

Either V ki
¼ 0 or Nki

yy ¼ A
ij
13

Xny
m¼1

W 1
kmUmj þ ðA

ij
11 þ B

ji
12ÞUkj þ A

ij
11

Xny
m¼1

W 1
kmVmj � ðA

ij
13 � B

ji
13ÞV kj ¼ 0, (16)

where k ¼ 1 at y ¼ 0 and k ¼ ny at y ¼ y0.
In order to implement the boundary conditions, the boundary and domain degrees of freedom should be

separated. Here, the vectors b and d are, respectively, used to represent the boundary and domain degrees of
freedom, which are defined as

b ¼ ½U11;U12; . . . ;U1nn
;V ny1;Vny2; . . . ;Vnynr

�T; d ¼ ½U21;U22; . . . ;Un0ynn
;V 21;V22:; ::;V n0ynr

�T, (17)

where n0y ¼ ny � 1: Using these definitions, the discretized form of the equations of motion and the boundary
conditions can be written respectively, as

M€dþ Kdddþ Kdbb ¼ 0, (18)

Kbbbþ Kbdd ¼ 0: (19)

Based on the definitions of domain and boundary degrees of freedom given in Eq. (17), the elements of mass
matrix M, domain stiffness matrices Kdb and Kdd are obtained from the discretized forms of the equations of
motion. Also boundary stiffness matrices Kbb and Kbd are found using the discretized form of the boundary
conditions in the same manner.

After eliminating the boundary degrees of freedom from Eq. (18) using Eq. (19), the result becomes

M€dþ Kd ¼ 0, (20)

where K ¼ Kdd � KdbK
�1
bb Kbd :
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In studying the free vibration analysis, one can assume that d ¼ Deiot in which o is the natural frequency of
the arch. Inserting this expression into Eq. (20), the final eigenvalue equation is obtained as

ð�o2Mþ KÞD ¼ 0. (21)

Solving Eq. (21), the natural frequencies and mode shapes can be determined.

5. Results and discussion

In this section, first, the convergence behaviors of the method for evaluating the non-dimensional natural
frequencies ($i) versus number of mathematical layers in the thickness direction and DQ grid points along the
axial direction are verified. The antisymmetric cross-ply [01/901] laminates is chosen here, as these laminates
suffer the worst stretching–bending coupling due to unsymmetrical lamination. In all the problems considered,
the individual layers are taken to be of equal thickness and quadratic Lagrange interpolation functions are
used through the thickness. The calculations are done for various values of the modular ratio E1/E2 and the
other mechanical properties of each lamina are assumed to be G12/E2 ¼ G13/E2 ¼ G23/E2 ¼ 0.5,
v12 ¼ v13 ¼ v23 ¼ 0.25.

In order to model the arch via the ABAQUS software, continuum plane stress elements with eight-node bilinear,
hourglass control and reduced integration [22] are adopted to obtain accurate results. In each case, the convergence
study was performed to obtain the converged results up to four significant digits and for brevity purpose, only the
converged results are presented here. The number of elements to obtain the converged solutions depends on
the type of boundary conditions and the value of thickness-to-length ratio; hence it differs from table to table.

As a first example, the convergence behaviors of the first three non-dimensional natural frequencies of the
laminated arches for two different values of the thickness-to-length ratio and a large value of the orthotropy
ratio are shown in Tables 1 and 2. The results are prepared for different numbers of the mathematical layers
(nm) of the layerwise theory. In addition to the ABAQUS results, the exact solutions of the first- and higher-
order shear deformation theories [7,11] are also cited in these tables. For all cases, fast rates of convergence of
the method are quite evident. It is found that two mathematical layers and nine grid points for DQM can yield
results that are in close agreements with the other solutions. It is also obvious from the data presented in these
tables that excellent agreement exists between the results of the present two-dimensional approach and those
of the ABAQUS. Based on the data reported in these tables, the differences between the presented two-
dimensional formulations and ABAQUS results and also HSDT are negligible. However, the results of
the FSDT are greater than those of the other approaches. This is because the FSDT cannot simulate the
transverse shear deformation accurately. Due to zig-zag nature of the displacement components in the
layerwise theory, which enables the method to more accurately simulate the transverse shear deformation, it
seems that the results of the present approach have better accuracy than those of the HSDT. It should be
noted here that, better accuracy of DQ method with respect to finite element method was demonstrated in
Table 1

Convergence of the first three non-dimensional natural frequencies of the laminated cross-ply [01/901] simply supported curved beams

(y0 ¼ 57.2961, L/h ¼ 10, E1/E2 ¼ 40)

nx nm ¼ 2 nm ¼ 8 nm ¼ 16

$1 $2 $3 $1 $2 $3 $1 $2 $3

7 3.0759 11.3812 21.7805 3.0474 11.1258 21.2111 3.0471 11.1244 21.2076

9 3.0248 11.4172 21.8435 2.9960 11.1623 21.2482 2.9957 11.1609 21.2445

13 3.0254 11.4137 21.6649 2.9966 11.1587 21.0695 2.9964 11.1573 21.0658

17 3.0254 11.4137 21.6644 2.9966 11.1587 21.0689 2.9964 11.1573 21.0652

23 3.0254 11.4137 21.6644 2.9966 11.1587 21.0689 2.9964 11.1573 21.0652

ABAQUSa 2.9909 11.1264 20.9926

HSDT [11] 3.0107 11.2043 21.1321

FSDT [7] 3.0814 11.9637 23.1804

ane ¼ 616.
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Table 2

Convergence of the first three non-dimensional natural frequencies of the laminated cross-ply [01/901] simply supported curved beams

(y0 ¼ 57.2961, L/h ¼ 5, E1/E2 ¼ 40)

nx nm ¼ 2 nm ¼ 8 nm ¼ 16

$1 $2 $3 $1 $2 $3 $1 $2 $3

7 2.4774 7.7536 13.3881 2.4245 7.5527 13.1348 2.4243 7.5510 13.1300

9 2.4618 7.7602 13.5249 2.4086 7.5604 13.2624 2.4085 7.5587 13.2574

13 2.4620 7.7592 13.4515 2.4088 7.5594 13.1874 2.4087 7.5576 13.1824

17 2.4620 7.7592 13.4513 2.4088 7.5593 13.1872 2.4087 7.5576 13.1822

23 2.4620 7.7592 13.4513 2.4088 7.5593 13.1872 2.4087 7.5576 13.1822

ABAQUSa 2.4024 7.5312 13.1363

HSDT [11] 2.4208 7.5603 13.1246

FSDT [7] 2.5935 8.3979 14.466

ane ¼ 500.

Table 3

Comparison of the first four non-dimensional natural frequencies of the laminated cross-ply [01/901] simply supported curved beams (L/

h ¼ 10)

y0 (deg) E1/E2 ¼ 15 E1/E2 ¼ 40

$1 $2 $3 $4 $1 $2 $3 $4

Present 90 2.8808 14.0479 29.3597 46.6904 2.3034 10.3571 20.2680 30.8938

ABAQUSa 2.8709 13.9904 29.2246 46.4634 2.2983 10.3252 20.1943 30.7759

Present 180 10.0822 25.1744 42.6101 61.2040 7.3459 17.2762 28.1096 39.4093

ABAQUSb 10.0236 25.0280 42.3681 60.8715 7.3165 17.2021 27.9876 39.2445

Present 270 2.8982 5.1885 19.7436 37.2694 2.2174 3.7257 13.4435 24.4849

ABAQUSc 2.8771 5.1514 19.6102 37.0324 2.2070 3.7077 13.3780 24.3677

ane ¼ 640.
bne ¼ 1050.
cne ¼ 1428.
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previous studies [16,17,21]. Since both the presented approach and ABAQUS model used in this study are
based on the two-dimensional elasticity theory, the authors believe that the method proposed here yields more
accurate results than the results generated using ABAQUS.

The results for the thick laminated deep arches with some combinations of classical boundary conditions
are not yet available in the open literature. Hence, here some new results for these cases are presented in
Tables 3–10. Comparisons between the results of the present method and those of the ABAQUS are made for
different values of opening angles and two different values of thickness-to-length and orthotropy ratios.

Tables 3 and 4 give the first four natural frequency parameters for laminated cross ply simply supported
arches for L/h ¼ 10 and 5, respectively. Results for some other sets of boundary conditions are given in
Tables 5–10. While it is difficult to draw general conclusions on the nature of variation of the natural
frequency with opening angle it may be noted that for any given angle, the non-dimensional natural frequency
parameters are higher for L/h ¼ 10 than for L/h ¼ 5. However, it should be mentioned that the actual natural
frequencies will be lower for the more slender arch.

Also, it can be noted that the higher-order frequencies for arches with clamped, simply supported and
clamped–simply supported edges, as one would expect in most cases, are less sensitive to boundary conditions.
Although for brevity purposes the results for only two values of orthotropy ratios are presented here, however,
based on the numerical experiment done during this work, it is found that increasing the orthotropy ratio
resulted in a decrease in the non-dimensional frequencies.

In all cases, the maximum percentage error between the results of the present method and those of the
ABAQUS software is less than 1% which shows the validity of the presented approach.
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Table 5

Comparison of the first four non-dimensional natural frequencies of the laminated cross-ply [01/901] clamped curved beams (L/h ¼ 10)

y0 (deg) E1/E2 ¼ 15 E1/E2 ¼ 40

$1 $2 $3 $4 $1 $2 $3 $4

Present 90 18.5885 26.9657 41.8114 49.5849 12.6777 19.7844 32.3570 34.9780

ABAQUSa 18.5132 26.9556 41.8425 49.3914 12.6369 19.7504 32.2505 35.1869

Present 180 14.2157 26.3622 44.4845 57.9069 9.6321 17.6432 29.0050 39.0100

ABAQUSb 14.1432 26.2636 44.3013 57.9182 9.5954 17.5909 28.9081 38.9331

Present 270 10.4272 22.0748 38.9472 55.8021 7.1103 14.4866 25.2521 36.0501

ABAQUSc 10.3640 21.9735 38.7833 55.6281 7.0786 14.4381 25.1694 35.9545

ane ¼ 640.
bne ¼ 1050.
cne ¼ 1428.

Table 6

Comparison of the first four non-dimensional natural frequencies of the laminated cross-ply [01/901] clamped curved beams (L/h ¼ 5)

y0 (deg) E1/E2 ¼ 15 E1/E2 ¼ 40

$1 $2 $3 $4 $1 $2 $3 $4

Present 90 12.2221 15.3166 23.8728 29.6015 7.7813 11.4893 17.9500 18.7704

ABAQUSa 12.1789 15.4061 23.9244 29.5450 7.7587 11.5392 18.3670 18.7301

Present 180 9.4975 16.4178 27.2032 32.0964 6.0127 10.6210 17.2125 22.3908

ABAQUSb 9.4701 16.4338 27.1973 32.6738 5.9993 10.6332 17.2020 22.6223

Present 270 7.2958 14.1324 24.3379 33.7605 4.6582 8.9302 15.3536 21.5111

ABAQUSc 7.2911 14.1456 24.4190 34.0310 4.6565 8.9490 15.4078 21.6798

ane ¼ 1008.
bne ¼ 1280.
cne ¼ 1710.

Table 4

Comparison of the first four non-dimensional natural frequencies of the laminated cross-ply [01/901] simply supported curved beams (L/

h ¼ 5)

y0 (deg) E1/E2 ¼ 15 E1/E2 ¼ 40

$1 $2 $3 $4 $1 $2 $3 $4

Present 90 2.5206 10.6525 20.1058 29.9594 1.8365 7.0274 12.7568 18.7268

ABAQUSa 2.5059 10.5920 20.0032 29.8274 1.8291 6.9969 12.7058 18.6617

Present 180 7.7364 17.6234 28.0531 38.5798 5.0577 11.1520 17.5292 23.9850

ABAQUSb 7.6840 17.5157 27.8955 38.3934 5.0319 11.0961 17.4395 23.8664

Present 270 2.4758 4.0615 14.2913 25.4291 1.6989 2.6265 9.0092 15.8761

ABAQUSc 2.4722 4.0398 14.1941 25.2683 1.6972 2.6161 8.9569 15.7769

ane ¼ 1008.
bne ¼ 1280.
cne ¼ 1710.
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6. Conclusion

Based on the two-dimensional theory of elasticity, an accurate solution is presented for the free vibration
analysis of thick laminated deep circular arches with some combinations of classical boundary conditions
(simply supported, clamped and free). The formulations are general in the sense that the effects of the
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Table 7

Comparison of the first four non-dimensional natural frequencies of the laminated cross-ply [01/901] clamped–free curved beams (L/

h ¼ 10)

y0 (deg) E1/E2 ¼ 15 E1/E2 ¼ 40

$1 $2 $3 $4 $1 $2 $3 $4

Present 90 1.6985 7.0299 19.9456 34.8932 1.3927 5.2611 14.1800 23.9202

ABAQUSa 1.6916 7.0058 19.8661 34.7699 1.3895 5.2485 14.1383 23.8534

Present 180 1.9284 5.3083 16.0730 31.2102 1.5471 3.9121 11.3158 21.1374

ABAQUSb 1.9178 5.2796 15.9879 31.0609 1.5425 3.8980 11.2742 21.0651

Present 270 2.3962 4.6872 12.4248 26.8177 1.8673 3.4072 8.6428 18.0057

ABAQUSc 2.3799 4.6528 12.3475 26.6672 1.8599 3.3897 8.6058 17.9352

ane ¼ 640.
bne ¼ 1050.
cne ¼ 1428.

Table 8

Comparison of the first four non-dimensional natural frequencies of the laminated cross-ply [01/901] clamped–free curved beams (L/h ¼ 5)

y0 (deg) E1/E2 ¼ 15 E1/E2 ¼ 40

$1 $2 $3 $4 $1 $2 $3 $4

Present 90 1.5812 5.3324 13.8514 21.6928 1.2164 3.6163 9.1228 14.2996

ABAQUSa 1.5717 5.3087 13.7975 21.6941 1.2118 3.6059 9.0988 14.2841

Present 180 1.7525 4.0976 11.2771 20.4697 1.2949 2.7211 7.3690 13.0761

ABAQUSb 1.7395 4.0738 11.2342 20.4071 1.2885 2.7104 7.3506 13.0474

Present 270 2.1030 3.6942 8.8569 18.1698 1.4867 2.4157 5.7248 11.5216

ABAQUSc 2.0992 3.6798 8.8498 18.1339 1.4841 2.4089 5.7261 11.5094

ane ¼ 1008.
bne ¼ 1280.
cne ¼ 1710.

Table 9

Comparison of the first four non-dimensional natural frequencies of the laminated cross-ply [01/901] clamped–simply curved beams (L/

h ¼ 10)

y0 (deg) E1/E2 ¼ 15 E1/E2 ¼ 40

$1 $2 $3 $4 $1 $2 $3 $4

Present 90 4.4713 15.9007 30.7693 46.4623 3.3858 11.2700 20.9424 31.3285

ABAQUSa 4.4544 15.8367 30.6450 46.3398 3.3769 11.2346 20.8723 31.2233

Present 180 2.3805 11.7430 26.3544 43.1214 1.8351 8.2168 17.7692 28.3793

ABAQUSb 2.3678 11.6797 26.2234 42.9245 1.8293 8.1850 17.7028 28.2749

Present 270 2.4882 7.7015 21.2140 37.9661 1.9454 5.3431 14.1522 24.7843

ABAQUSc 2.4710 7.6504 21.0942 37.7696 1.9374 5.3178 14.0937 24.6862

ane ¼ 640.
bne ¼ 1050.
cne ¼ 1428.
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variation of arch curvature across the cross section, the transverse shear and normal stresses and inertias are
included. Fast rates of convergence of the method are demonstrated and its high accuracy with low
computational efforts are exhibited by comparing the results with existing solutions in the literature and also
with those obtained using the ABAQUS software. For some different values of the geometrical and material
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Table 10

Comparison of the first four non-dimensional natural frequencies of the laminated cross-ply [01/901] clamped–simply curved beams (L/

h ¼ 5)

y0 (deg) E1/E2 ¼ 15 E1/E2 ¼ 40

$1 $2 $3 $4 $1 $2 $3 $4

Present 90 3.5539 11.1211 19.7928 26.2799 2.4080 7.2512 12.7855 18.4479

ABAQUSa 3.5357 11.0753 19.7454 26.4934 2.3988 7.2266 12.7497 18.4328

Present 180 2.0226 8.2987 17.4247 27.1464 1.4234 5.3439 11.0824 17.2277

ABAQUSb 2.0090 8.2645 17.3709 27.1186 1.4164 5.3276 11.0539 17.1952

Present 270 2.1867 5.5946 14.3822 24.7214 1.5519 3.5795 9.0733 15.5403

ABAQUSc 2.1848 5.5801 14.3481 24.6908 1.5505 3.5735 9.0595 15.5239

ane ¼ 1008.
bne ¼ 1280.
cne ¼ 1710.
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properties such as opening angle, thickness-to-length and orthotropy ratios, the natural frequencies of the
thick laminated arches with different set of boundary conditions are obtained. The solutions can be used as
benchmarks for other numerical methods and also to evaluate the accuracy of the classical theories such as the
first-order shear deformation theory.

Appendix A. DQ weighting coefficients

The basic idea of the differential quadrature method is that the derivative of a function, with respect to a
space variable at a given sampling point is approximated as a weighted linear sum of the sampling points in the
domain of that variable. In order to illustrate the DQ approximation, consider a function f(x) having its field
on a rectangular domain 0pxpL. Let, in the given domain, the function values be known or desired on a grid
of sampling points. According to DQ method, the rth derivative of a function f(x) can be approximated as [16]

qrf ðxÞ

qxr

����
x¼xi

¼
XNx

m¼1

W r
imf ðxmÞ ¼

XNx

m¼1

W r
imf m for i ¼ 1; 2; . . . ;Nx and r ¼ 1; 2; . . . ;Nx � 1. (A.1)

From this equation one can deduce that the important components of DQ approximations are weighting
coefficients and the choice of sampling points. In order to determine the weighting coefficients a set of test
functions should be used in Eq. (A.1). For polynomial basis functions DQ, a set of Lagrange polynomials are
employed as the test functions. The weighting coefficients for the first-order derivatives in x-direction are thus
determined as [16]

W 1
ij ¼

1

L

MðxiÞ

ðxi � xjÞMðxjÞ
for iaj;

i; j ¼ 1; 2 . . . ;Nx;

�
PNx

j¼1
iaj

W 1
ij for i ¼ j;

8>>>>>><
>>>>>>:

(A.2)

where

MðxiÞ ¼
YNx

j¼1;iaj

ðxi � xjÞ.

The weighting coefficients of second-order derivative can be obtained as

½W 2
ij � ¼ ½W

1
ij�½W

1
ij� ¼ ½W

1
ij�

2. (A.3)
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In numerical computations, Chebyshev–Gauss–Lobatto quadrature points are used, that is

xi

L
¼

1

2
1� cos

ði � 1Þp
ðNx � 1Þ

� �� �
for i ¼ 1; 2; . . . ;Nx. (A.4)
Appendix B

In the present work the global quadratic shape functions are used through the thickness of the laminated
arches, which can be expressed as

jiðrÞ ¼

0; rpri�1; riþ1pr;

r2 � ðri�1 þ riþ1Þrþ ri�1riþ1

r2i � ðri�1 þ riþ1Þri þ ri�1riþ1

; ri�1prpriþ1;

8><
>: i ¼ 2; 4; . . . ; nr � 1, (B.1)

jiðrÞ ¼

0; Riprpri�2ðia1Þ; riþ2prpRoðianrÞ;

r2 � ðri�2 þ ri�1Þrþ ri�2ri�1

r2i � ðri�2 þ ri�1Þri þ ri�2ri�1

; ri�2prpriðia1Þ;

r2 � ðriþ1 þ riþ2Þrþ riþ1riþ2

r2i � ðriþ1 þ riþ2Þri þ riþ1riþ2

; riprpriþ2ðianrÞ;

8>>>>>><
>>>>>>:

i ¼ 1; 3; . . . ; nr, (B.2)

where ri is the radial position of the node i. Using Eqs. (B.1) and (B.2), one can obtain the stiffness coefficient
appeared in the governing equations and the boundary conditions. The values of the stiffness coefficient
depend on the location of the nodes i and j.

If i is an even number, then for j ¼ 1,2,y, nr:

Aij
mn ¼ bCði=2Þmn Âij ; Bij

mn ¼ bCði=2Þmn B̂ij ; Dij
mn ¼ bCði=2Þmn D̂ij, (B.3)

where

Âij ¼
a1b1
4
ðR4

3 � R4
1Þ þ
ða1b2 þ a2b1Þ

3
ðR3

3 � R3
1Þ þ
ða1b3 þ a3b1 þ a2b2Þ

2
ðR2

3 � R2
1Þ

þ ða2b3 þ a3b2ÞðR3 � R1Þ þ a3b3 log ðR3=R1Þ,

B̂ij ¼
a1b1
2
ðR4

3 � R4
1Þ þ
ða1b2 þ a2b1Þ

2
ðR3

3 � R3
1Þ þ
ða1b3 þ a3b1 þ a2b2Þ

2
ðR2

3 � R2
1Þ

þ
ða2b3 þ a3b2Þ

2
ðR3 � R1Þ,

D̂ij ¼ a1b1ðR
4
3 � R4

1Þ þ
ð2a1b2 þ 2a2b1Þ

3
ðR3

3 � R3
1Þ þ

a2b2
2
ðR2

3 � R2
1Þ, (B.4)

and

faig ¼ R̂
�1
fa; fbig ¼ R̂

�1
fb, (B.5)

with

R̂ ¼

R2
1 R1 1

R2
2 R2 1

R2
3 R3 1

2
64

3
75 and R1 ¼ ri�1; R2 ¼ ri; R3 ¼ riþ1:

Also, CðiÞmn represent the elements of material stiffness coefficients of lamina i.



ARTICLE IN PRESS
P. Malekzadeh et al. / Journal of Sound and Vibration 315 (2008) 212–225224
The elements of the vectors fa and fb depend on the nodal numbers i and j,

fa ¼ 0; 1; 0
� T

and fb ¼
1; 0; 0
� T

if j ¼ i � 1;

0; 0; 1
� T

if j ¼ i þ 1:

8<
: (B.6)

If i is an odd number (i ¼ 1,3,y, nr�1), then defining iR ¼ ði � 1Þ=2þ 1 and iL ¼ iR � 1, one has

If i ¼ j ¼ 1 : Aij
mn ¼ bCðiÞmnÂij ; Bij

mn ¼ bCðiÞmnB̂ij ; Dij
mn ¼ bCðiÞmnD̂ij,

with fa ¼ fb ¼ 1; 0; 0
� T

and R1 ¼ ri; R2 ¼ riþ1; R3 ¼ riþ2. (B.7)

If i ¼ j ¼: nr Aij
mn ¼ bCðiLÞ

mn Âij ; Bij
mn ¼ bCðiLÞ

mn B̂ij ; Dij
mn ¼ bCðiLÞ

mn D̂ij,

with fa ¼ fb ¼ 0; 0; 1
� T

and R1 ¼ ri�2; R2 ¼ ri�1; R3 ¼ ri. (B.8)

If i ¼ j; ia1 and ianr:

Aij
mn ¼ bðCðiLÞ

mn Â
L

ij þ CðiRÞ
mn Â

R

ij Þ; Bij
mn ¼ bðCðiLÞ

mn B̂
L

ij þ CðiRÞ
mn B̂

R

ij Þ,

Dij
mn ¼ bðCðiLÞ

mn D̂
L

ij þ CðiRÞ
mn D̂

R

ij Þ; with fa ¼ fb ¼ 0; 0; 1
� T

,

R1 ¼ ri; R2 ¼ riþ1; R3 ¼ riþ2 for ð ÞLij ; and fa ¼ fb ¼ 1; 0; 0
� T

,

R1 ¼ ri�2; R2 ¼ ri�1; R3 ¼ ri for ð ÞRij . (B.9)

If j ¼ i � 1 : Aij
mn ¼ bCðiLÞmn Âij ; Bij

mn ¼ bCðiLÞ
mn B̂ij ; Dij

mn ¼ bCðiLÞ
mn D̂ij ; with fa ¼ 0; 0; 1

� T
,

f b ¼ 0; 1; 0
� T

and R1 ¼ ri�2; R2 ¼ ri�1; R3 ¼ ri. (B.10)

If j ¼ i þ 1 : Aij
mn ¼ bCðiRÞ

mn Âij ; Bij
mn ¼ bCðiRÞ

mn B̂ij ; Dij
mn ¼ bCðiRÞ

mn D̂ij ; with fa ¼ 1; 0; 0
� T

,

fb ¼ 0; 1; 0
� T

and R1 ¼ ri;R2 ¼ riþ1;R3 ¼ riþ2. (B.11)

If j ¼ i þ 2 : Aij
mn ¼ bCðiRÞ

mn Âij ; Bij
mn ¼ bCðiRÞ

mn B̂ij ; Dij
mn ¼ bCðiRÞ

mn D̂ij ; with fa ¼ 1; 0; 0
� T

,

fb ¼ 0; 0; 1
� T

and R1 ¼ ri; R2 ¼ riþ1; R3 ¼ riþ2. (B.12)

If j ¼ i � 2 : Aij
mn ¼ bCðiLÞ

mn Âij ;B
ij
mn ¼ bCðiLÞmn B̂ij ;D

ij
mn ¼ bCðiLÞ

mn D̂ij ; with fa ¼ 0; 0; 1
� T

,

fb ¼ 1; 0; 0
� T

and R1 ¼ ri�2;R2 ¼ ri�1;R3 ¼ ri. (B.13)
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